
UCRL-JC-131823
Preprint

Language Interoperability Mechanisms
For High-Performance Scientific Applications

A. Cleary, S. Kohn, S. G. Smith, B. Smolinski

This paper was prepared for submittal to
Proceedings of the Society for Industrial & Applied

Mathematicsworkshop on Object- Oriented Methods for
Interoperable Scientific and Engineering Computing

Yorktown Heights, NY
October Z-23,1998

September 18, 1998

This is a preprint of a pap&r intended for publication in a journal or proceedin;
Since changes may be made before publication, this preprint is made available
with the understanding that it will not be cited or reproduced without the
permission of the author.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and shall not
be used for advertising or product endorsement purposes.

Chapter 1
Language Interoperability Mechanisms

for High-Performance Scientific Applications*

Andrew Clearyt Scott Kohnt Steven G. Smith+ Brent Smolinskit

Abstract

Language interoperability is a difficult problem facing the developers and users
of large numerical software packages. Language choices often hamper the reuse and
sharing of numerical libraries, especially in a scientific computing environment that uses
a breadth of programming languages, including C, c ++, Java, various Fortran dialects,
and scripting languages such as Python. In this paper, we propose a new approach to
langauge interoparability for high-performance scientific applications based on Interface
Definition Language (IDL) techniques. We investigate the modifications necessary to
adopt traditional IDL approaches for use by the scientific community, including IDL
extensions for numerical computing and issues involved in mapping IDLs to Fortran 77
and Fortran 90.

1 Introduction
In recent years, the scientific computing community has seen a proliferation of languages
used for numerical simulation. The tradiational Fortran mainstay, Fortran 77, has
been joined by Fortran 90. C and C++ have become popular because of their support
for dynamic memory allocation, data structures, and-in the case of C++-object oriented
abstractions. The popularity of Java has driven standards proposals for Java numerical
libraries [8]. Computational scientists have also experimented with the use of high-level
scripting languages such as Python to coordinate large numerical simulations [4].

Language interoperability in this multilanguage environment is a difficult problem for
developers of new large numerical software packages and also for users of legacy software.
For library developers, the choice of one implementation language over another may
severely limit the reuse of their numerical software, especially considering the breadth
of programming languages used in the scientific computing environment. Users of legacy
software may be required to adopt the language of the legacy package for future applications
development, even though better alternaives may exist. If language interoperability is
desired, numerical software developers and users are often forced to write “glue” code
that mediates data representations and calling mechanisms between languages. However,
this approach is labor-intensive and in many cases does not provide seamless language
integration across the various calling languages. Fortran 90 is a particular challenge for
language interoperability, since Fortran 90 calling conventions vary widely from compiler
to compiler (see Section 3.3 for details).

‘Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract W-7405-Eng-48. This work has been funded by both ASCI PSE and DOE2000.

+Center for Appli ed Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA.

1

LANGUAGE INTEROPERABILITYMECHANISMS 2

One interoperability mechanism used successfully by the distributed systems commu-
nity [7, 12, 141 and the operating systems community [5, 6, ll] is based on the concept of
an Interface Definition Language or IDL. The IDL is a new “language” that describes the
calling interfaces to software packages written in standard programming languages such as
C, Fortran, or Java. Given an IDL description of the interface, IDL compilers automati-
cally generate the glue code necessary to call the software package from other programming
languages.

In this position paper, we propose to explore the IDL approach to language interoper-
ability and modify it for use by the scientific community. We begin with the object oriented
CORBA IDL specification [12] as a starting point and investigate the modifications neces-
sary for high-performance scientific computing.

Although IDLs are a proven technology for other communities, IDL techniques have
not been applied to high-performance scientific computing. We anticipate three primary
research issues in adopting IDL technology, First, we must determine what features are
needed in a scientific IDL to support numerical computing. For example, standard IDLs
such as that defined by CORBA do not include basic scientific computing data types
such as complex numbers or dynamic multidimensional arrays. Second, we must address
performance considerations. Our goal it to make the overhead of calls through the IDL
about as expensive as the invocation of a C++ virtual function. Finally, we must determine
how IDL features such as objects and their methods are to be mapped onto the various
Fortran dialects.

This paper is organized as follows. We begin with a survey of common interoperability
mechanisms. Section 3 describes our design goals for language interoperability, features
needed in a scientific IDL, language mappings, and run-time issues. Finally, we conclude
in Section 4 with an evaluation of our proposed IDL interoperability approach.

2 Survey of Interoperability Mechanisms
Language interoperability-the problem of connecting software modules written in different
programming languages-is a somewhat imprecise term. Programming languages provide
differing degrees of support for data abstraction, object oriented design, dynamic memory
allocation, or array-based computation. Such differences limit the level to which language
interoperability can be supported. For example, there are limitations to interoperability
between C and Fortran 77 since Fortran 77 does not support C’s notion of a pointer.

Of course, one of the reasons that language interoperability is so desirable is that it
enables programmers to exploit the various strengths of different programming languages.
No language has been shown to be the single best language for scientific computing.
Fortran is an excellent language for efficient array computation, but does not provide the
data abstraction and object oriented features of a languge such as C++ or Java. Scripting
languages such as Python provide a powerful environment for experimenting with scientific
simulations [4], but do not offer the performance of a compiled lanauge such as C.

2.1 Multiple Language Bindings
Probably the most common method of language interoperability for scientific libraries is
through the use of hand-generated library bindings. In this approach, library designers
select a (typically small) set of supported languages that will be able to call their library.
For each of these supported languages, the designers write a language binding specification
that describes the library interface-the objects (if any), functions, and data types-in

LANGUAGE INTEROPERABILITY MECHANISMS 3

that particular language. Essentially, library interfaces are redesigned for every supported
language. Finally, the library developers implement this language binding specification,
typically using glue code that connects the target language to the language used in the
implementation of the library. MPI [lo] is one scientific library that takes the multiple
language binding approach; the MPI specification describes bindings for both C and
Fortran 77.

The advantage to generating language bindings by hand is that the binding can be
tailored to the style and conventions of the particular language. For example, the MPI
specification dictates that MPI routines in C return error codes as function return values
whereas Fortran routines return error codes through an integer parameter in the argument
list, which follows the standard programming conventions for these two Iangauges.

The primary disadvantage of this approach is that is is very labor-intensive. Both the
language binding and the glue code must be generated by hand for each supported language.
Although the generation of glue code is typically straight-forward, many lines of glue code
will be needed to wrap every object, function, and data type that is to be accessible by the
calling language.

Furthermore, the use of multiple language bindings does not necessarily ensure
simultaneous cross-language use of the library. For example, the MPI language bindings
for both Fortran and C contain routines that create MPI communicator objects. However,
there is no well-defined mechanism for sharing MPI communicator objects between Fortran
and C. Therefore, a C application that allocates an MPI communicator cannot pass that
communicator to a Fortran numerical library routine. A careful design of the language
bindings can address these issues, but the difficulty grows with the size of the library and
the number of supported languages.

2.2 Bilateral Language Interoperability
Another technique for langauge interoperability uses libraries or automatically generated
glue code to support calls among a small set of targeted languages. For example, the SWIG
package [3] reads C and C++ header files and generates glue code so that these rougintes may
be called by scriptiong lagnugae such as Python. Pyf f le [13] is similar in approach to SWIG
and supports an almost seamless integration between Pythonand C++. The Java Native
Interface [9] defines a set of library routines that enables Java code to interoperate with
applications and libraries written in C amd C++. Python supports a calling interface for C.
These approaches solve part of the interoperability problem by developing custom solutions
that link particular languages; however, they do not address the larger issues involved with
interoperability for all of the scientific computing languages. Indeed, N languages could
potentially require O(iV2) different software packages for full interoperability.

2.3 Interface Definition Languages (IDLs)
The IDL approach to interoperability is somewhat similar to the approach described in the
previous section except that it unifieis all languages through a common mechanism. The
basic idea behind an IDL is to create a new language-the Interface Definition Langauge-
to provide a description of the interface for a software routine. an IDL language mapping
is defined for each supported language that maps constructs in the IDL into the target
language. For example, an interface in an object oriented IDL might be mapped onto
a class in C++ or an interface in Java. Glue code is generate automatically by an IDL
compiler that takes as input the IDL description of a software comoppnent and a language

LANGUAGE INTEROPERABILITY MECHANISMS 4

mapping for the target language. The IDL approach reduces the O(N2) potential language
mappings to only O(N), since every langueg get mapped to the IDL, from which every
other langauge is accessible.

IDL’s have been in use for a long time in the distributed computing field. Sun RPC
IDL and OSF/DCE IDL have been standard mechanisms for specifying remote procedure
call interfaces and have been widely used for both UNIX and Windows NT client/server
programming [RPC REF, 111. Microsoft borrowed heavily from the OSF/DCE IDL for its
COM IDL specification. Microsoft’s Component Object Model (COM) is the most widely
used component framework. CORBA . . . The ILU (Inter-Langauge Unification) project [7]
is apply

The drawback to the IDL approach is that language interoperability is limited to the
facilities and types described in the IDL, which may be a subset of the capabnilities in the
native languges. For example, a C poiter cannot be described in an IDL interface for an
IDL that doesn’t support the pointer type. However, this does not necessarily mean that
IDLs represent the lowest common demoninator for al the languages of interest. Many IDL
capabilities, such as object oriented constructs, can be supported throu a combination of
clever language mappings and run-time library routines, even for simple languages such as
C or Fortran 77.

3 IDLs for Scientific Applications
Of the three interoperability approaches described in the previous Section, we believe that
IDL techniques offer the most potential for the automated, seamless interoperability of
scientific libraries. In this section, we describe the modifications necessary to adapt existing
IDL methods for the scientific computing environment. We begin with a description of how
our approach would be viewed from the perspective of both a library developer and a library
user.

The developer of a numerical software library would perform the following steps.

1. Specify an interface to the library in the IDL. The IDL specification provides a high-
level, language-independent description of the library interface. For example, the
following is an IDL specification for a Vector object in a hypothetical Solver library.

package Solver C
interface Vector (

// data access to the vector
void setData(in double data) ;
void setData(in array<double, l> data) ;
void getData(out array<double,i> data);

// standard vector functions
double dot(in Vector y> ;
void scale(in double a> ;
void axpy(in double a, in Vector y>;

2. Compile the IDL specification using the IDL compiler to generate skeleton glue code
in the implementation language of the library.

LANGUAGEINTEROPERABILITYMECHANISMS 5

3. Write the functions that implement the interface. In doing so, the library developer
must ensure that the function signatures match those expected by the skeleton
glue code. For example, the CORBA language mappings for C specify that
the dot 0 member function given above would be implemnted by C function
Solver-Vector-dot 0. For implementors of a new library, these namimg conventions
are not particularly difficult to follow. However, library developers that wish to wrap
existing libraries in the IDL for interoperability may need to write a small amount of
glue code to convert between the expected IDL function names and the names used
by the library. Note that this glue code need be written only once to map the IDL
to the library, as opposed to writing glue code for every language as in the approach
described in Section 2.1.

4. Deliver the library code along with the skeleton glue code generated by the IDL
compiler.

To create an application that uses the library described above, a library user would:

1. Compile the IDL specification provided by the library developer for the application
target language. The IDL compiler will generate stub glue code that will connect the
applications code to the library.

2. Write the applications code. The library user will reference the library interface as
specified language mappints and the stub glue code. For example, using CORBA
conventions, the IDL function dot 0 given above would be mapped to method
Solver: :Vector : : dot 0 for C++ and to function Vector-dot 0 in module Solver
for Fortran 90.

3. Compile and link the applications code with the stub and skeleton code generated by
the IDL compiler, the library code, and the small run-time library needed by the IDL
system.

3.1 Design Considerations
Our IDL approach must not introduce significant overheads at run-time; otherwise, it will
not be used in a high-performance computing environment. Traditionally, IDLs have been
used for distributed applications spanning multiple address spaces. Because there can be
no data sharing across multiple address spaces, distributed run-time systems must marshal,
communicate, and un-marshal data arguments during method invocation. Such overheads
would be prohibitively expensive for the large scientific data sets found in high-performance
computing. Therefore, we require that all software modules linked by our IDL must share
the same address space. Within a single, shared address space, data can be passed between
modules via reference without expensive data copies.

Note that this design constraint does not preclude the use of our approach for
high-performance parallel computation using MPI. The traditional SPMD approach to
parallelism already assumes a single address space for each MPI process, and our design
fits naturally into this programming model. Indeed, the interoperability needs of numerical
libraries for massively parallel computation is the driver for much of this work.

With the increasing use of shared memory multiprocessors in scientific computing, we
plan on supporting threads. The runtime system will be designed to be thread safe. Library
writers will be responsible for thread safety of components. An open issue is which thread
model to use; both OpenMP and Pthreads will likely be in widespread use. At the current

LANGUAGE INTEROPERABILITY MECHANISMS 6

time we do not know how to implement the runtime system to support the simultaneous
use of both thread models so we will initially target Pthreads. We do not address the issues
regarding the interaction of MPI and threads.

Finally, our design must support the standard numerical programming languages,
including C, C++, Fortran 77, Fortran 90, Java, and Python. Additionally, we plan to
investigate support for mathematical prototyping tools such as MatLab.

3.2 Scientific IDL
For this approach to work, we must choose an IDL that is expressive enough to represent the
abstractions and data types common in scientific computing. Unfortunately, no such IDL
currently exists, since most IDLs have been designed for distributed client-server computing
in the business domain.

Thus, we have decided to begin with the object oriented CORBA IDL specification
[12] as a starting point and then modify it as necessary for high-performance scientific
computing. The CORBA IDL was chosen for several reasons. It is fairly simple and
elegant with a syntax similar to Java or simplified C ++, object oriented, and supports an
error-reporting exception mechanism. It provides a module construct that helps manage
the namespaces for different libraries (e.g., to ensure that the Vector object from library
A does not clash with the Vector object from library B). It is an industry standard and
supported by a large user community. With the exception of Fortran and MatLab, lanuage
mapping specificationsh hae been written for all of our targetd scientific languages. In
our work, we can leverage these language mappings and the other work in the CORBA
community.

In the following sections, we describe some of the issues in adopting the CORBA IDL
for scientific computing.

3.2.1 Unnecessary CORBA IDL Constructs The CORBA IDL contains a number
of constructs that are either inappropriate or unnecessary for scientific computing. For
example, the oneway method attribute only makes sense in a distributed environment. To
simplify the development of our prototype, we have also eliminated support for struct and
union. Both of these constructs can be represented easily using objects, as is done in Java.
These constructs may be included later, if warranted.

3.2.2 New Types for Scientific Computing The CORBA IDL specification lacks
both complex numbers and dynamic multidimensional arrays, and both are essential to
numerical and scientific computing. Complex numbers are failrly trivial to add to the
IDL. The only issue is the mapping of the complex numbers into lanugages without a
built-in complex type, but complex number libraries either exist or are straight-forward to
implement for all languages of,interest.

We have also added dynamic multidimensional arrays to the CORBA IDL. CORBA
currently only supports fixed-length arrays and sequences. A sequence is similar to an array
but is limited to one dimension. In CORBA IDL, varying-levntgh multidimensional arrays
are gererally built from sequences of sequences. However, this representation is similar
to an C array of pointers to arrays and is not as natural for most scientific computing as
multidimensinal arrays. As illustrated in the IDL sample code in the beginning of this
Section, we have specified arrays as array<TYPE,N>, where TYPE is the type of the array
(e.g., double) and N is the array dimension.

Another issue is the representation of arrays in the various targeted programming
languages. For efficiency, IDL arrays should map onto native array constructs. However,

LANGUAGE INTEROPERABILITYMECHANISMS 7

the native representation of arrays in Fortran (column major) is different from C and C++
(row major) and also Java and Python, which have their own representations. There are
three potential solutions we plan to evaluate. The first is to automatically convert the array
to the representation assumed by the implementation language. Thus, arrays passed to a
Fortran library from a C application would need to be transposed in memory. This is the
simplest solution, but also the most expensive, since arrays would need to be copied on every
call between languages with different native representations. Second, layout attributes such
as column or row could be added to the IDL to specify the format of the array expected
by the implementation. This would provide more flexibility for the library developer and
would force data copies only when needed. Finally, the IDL run-time system could provide
simple routines that would convert array representations at run-time at the request of the
library implementation.

3.2.3 New IDL Constructs We have added two new method modifiers to the CORBA
IDL: static and final. Static methods may be invoked without an explicit object reference
and are supported by both Java and C++; they can be thought of as a standard function
call in a non-object oriented language. Static methods are not supported by CORBA
since distributed computing environments require object references to specify the execution
context. Static methods will be essential in the generation of IDL descriptions for legacy
subroutine libraries that were written without an object model.

The final qualifier is taken from Java and indicates that the specified method may
not be redefined in subclasses. By default, we adopt the Java convention that all non-static
methods may be redefined in subclasses unless they are declared final. This is the opposite
of the C++ convention, which assumes that methods must be explicitly declared virtual
to be redefined by subclasses. There is a slight overhead cost associated with dynamic
function dispatch for virtual (i.e., non-final) methods. The final keyword will enable the
stub code and run-time system to optimize away these overhead costs.

3.2.4 Inheritance Issues Unfortunately, the CORBA specification does not currently
support method redefinition in subclasses nor a useful model of multiple inheritance. We
consider both of these necessary capabilities for the object oriented design of general and
extensible-scientific libraries. It is straight-forward to support method redefinition in the
run-time system (see Section 3.4); however, multiple inheritance is more problematic.

There are two potential models for multiple inheritance, which we shall call the C++
model and the Java model. The C++ approach allows a subclass to inherit both interface
and implemenation from multiple superclasses. Unfortunately, multiple inheritance of
implemenations causes difficulties when superclass methods share the same signature;
references to such methods are generally ambiguous, since the compiler does not know
which method implementation to invoke. C++ solves this problem by requiring unambiguos
references in the implemnation that is enforced by the compiler. Such an approach does
not work with an IDL, since the IDL cannot force the compilers used for the library
implemntations to check the semantics for multiple inheritance.

Thus, we have chosen to implement Java’s model for multiple inheritance. In this model,
a subclass may inherit multiple interfaces but only one implementaion. This appears to be
a much more elegant model for multiple inheritance and it does not share the limitations
of C++‘s model. Following the Java model, we have also added an abstract qualifier that
indicates that a method does not have an implemenation and must be defined by a subclass.

LANGUAGE INTEROPERABILITY MECHANISMS 8

3.3 IDL Language Mappings
An IDL language mapping determins how IDL features are mapped onto the target
language. Language mappings for the CORBA IDL have been defined by the CORBA
specification for C, C++ and Java[l2]. The ILU project [7] has defined a mapping between
the CORBA IDL and Python. Obviously, these mappings must be extended for the features
that we have added to the base CORBA IDL, but the mappings for these additional
extensions are fairly straight-forward.

Unfortunately, IDL language mappings to Fortran dialects do not exist. For the most
part, the mapping between IDL and Fortran will be similar to the mapping between IDL
and C with the exception of the representation for objects, strings, and arrays. Objects
in Fortran 77 are generally represented using integer identifiers in the same fashion that
MPI [lo] uses intergers to represent MPI communicators; objects in Fortran 90 can either
be represented using the same approach or the expanded Fortran 90 type system. Strings
that are char * arrays in C ++ will become character * (*> arrays in Fortran with different
termination conditions (NULL for C but an explicit length for Fortran). Arrays mappings
for Fortran 77 are straight-forward, although Fortran 90 mappings are problematic, as
described below.

The primary problem in mapping to Fortran is that calling sequences, name mangling,
and Fortran 90 array descriptors vary greatly from compiler to compiler. Thus, in order
to generate glue code for Fortran, the IDL compiler system must be aware of the low-level
details of Fortran compiler conventions. For example, consider the following potential
Fortran 90 mapping of the sample IDL code given in the beginning of this Section.

module Solvers
. . .
contains

subroutine Vector-setData(this, data)
type (Vector) this
real *8, dimension (: > : : data
. . .
end subroutine Vector-setData

end ‘module Solvers

Calling this Fortran 90 code from another language requires that we understand how the
Fortran 90 compiler represents the function name and how data is passed into the function.
Figure ?? illustrates the differences in naming and parameter passing conventions for two
f 90 compilers. There are two important points. First, the compilers generate different
symbols for the function Vector-setData0. Second, the compilers use different array
descriptor structures to represent the array argument, including different definitions of
bounds and stride (e.g., byte-based for the SGI but word-based for the Sun).

Fortunately, we need to determine these Fortran 90 calling conventions only once and
then catalogue them within the IDL compiler system. Once the conventions are established,
the IDL compiler will automatcailly generate the glue code necessary to tie the Fortran 90
code with other languages. Note that it would be exceedingly tedious to generate this glue
code by hand considering the significant differences in Fortran 90 calling mechanims.

3.4 Run-Time Support Library
Difficult to support such things by hand. Talk about PETSc. Get a reference to a
description of what PETSc does or COM tables or C++ virtual function tables. Support for

struct vector (
struct f90-array

double *data;
. . .
short flags ;
short rank;
. . .
. . .
int lower0;
int upper0 ;
int stride0;

3;

LANGUAGE INTEROPERABILITY MECHANISMS 9

. . 3; struct vector C . . . 3;
C struct f90-array C

. . .
double *data;
. . .
short flags;
short rank;
. . .
int LowerO;
int upper0;
int stride0 ;

3;
void vector-setdata.in.solvers-(void solvers$vector-setdata- (

struct vector *this struct vector *this
struct f go-array *data) struct f go-array *data)

< iI
.

3 3
FIG. 1. This figure gives a pseudo-C representation that is equivalent to the assembply code

generated by the f90 compilers on the Sun (~1.2, left) and the SGI (~6.2, right). Note that his is
not valid C code since neither “. n nor “$” are vaild characters within C identifiers.

multiple inheritance.
As mentioned previously the runtime system must be thread aware due to the

possibility of multiple threads manipulating components. There should be no significant
implementation difficulties, as the design is a similiar to a producer/consumer model. Since
library writers are responsible for thread safety of components, additional overhead in the
runtime system is only need for object creation, deletion, and reference counting. This
additional overhead should be minimal if the relative frequency of object, creation is low
compared- with the amount of computation. This should be the case for the application
domains we are considering.

4 Analysis and Future Work
We have proposed a new approach to language interoperability for high-performance
scientific applications based on Interface Definition Language (IDLs) techniques. IDL
technology would enable computational scientists to use the programming language most
appropriate for the task at hand, or to mix legacy software libraries, without concern about
implementation laguages and interoperability. Furthermore, IDL approaches may solve the
very difficult problem of interoperability with Fortran 90 codes.

In this paper, we have emphasized the advantages of IDLs for language interoperability.
We see other advantages, as well. Object oriented IDLs provide a common language for
specifying object oriented interfaces to numerical libraries. The IDL run-time system
also provides support for advanced object oriented features-such as run-time type
identification, cross-language error reporting mechanisms, and multiple inheritance-even
for those languages that do not directly support object oriented features, such as C or
Fortran. Object oriented features have been built into C libraries by hand [l, 21, but an
IDL compiler automates this tedious process.

LANGUAGE INTEROPERABILITY MECHANISMS 10

We see two potential weaknesses in the IDL approach. First, the overheads of the IDL
run-time system and glue code may be too high for high-performance scientific computing.
We believe that the overheads can be limited to about the cost of a C++ virtual function call;
most function bodies will contain sufficient work to amortize this small overhead. Second,
scientific programmers-traditionally a very conservative group-may not be willing to
accept the naming conventions dictated by the IDL compiler or may not be willing to rely
on yet another software library. We believe that the benefits of language interoperability
and support for object oriented abstractions in C and Fortran will more than outweigh
these disadvantages.

To date, we have completed a parser that reads the IDL grammar described in this
paper, and we are currently implementing the IDL type checker. Implementation of the run-
time system will be straight-forward, since it provides only basic facilities for error handling,
run-time type identification, and object reference counting. Next, we will implement the
glue code generation routines for the various target languages. We will begin with C, C++,
and Fortran 77 to validate our approach and study inter-language performance overheads.
Finally, we will implement the glue code generators for Java, Python, and Fortran 90.

Acknowledgements
Much of this work was motived by discussions at Common Component Architecure (CCA)
workshops. The CCA group consists of representatives from DOE laboratories and
academia working towards the specification of a component framework for high-performance
scientific computing.

References

[I] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, Eficient management of parallelism in
object oriented numerical software libraries, in Modern Software Tools in Scientific Computing,
E. Arge, A. M. Bruaset, and H. P. Langtangen, eds., Birkhauser Press, 1997, pp. 163-202.

PI -7 PETSc home page, 1998. See http: //www.mcs .anl .gov/petsc.
[3] D. Beazley, SWIG: An easy to use tool for integrating scripting languages with C and C++, in

The 4th Annual Tcl/Tk Workshop, 1996. See http: //www . swig. org.
[4] D. M. Beazley and P. S. Lomdahl, Building flexible large-scale scientific computing applications

with scripting languages, in The 8th SIAM Conference on Parallel Processing for Scientific
Computing, Minneapolis, MN, March 1997.

[5] G. Eddon and H. Eddon, Inside Distributed COM, Microsoft Press, Redmond, WA, 1998.
[6] E. Eide, J. Lepreau, and J. L. Simister, Flexible and optimized IDL compilation for distributed

applications, in Proceedings of the Fourth Workshop on Languages, Compilers, and Run-time
Systems for Scalable Computers, 1998.

[7] B. Janssen, M. Spreitzer, D. Larner, and C. Jacobi, ILU Reference Manual, Xerox Corporation,
November 1997. Available at ftp: //ftp .parc .xerox. com/pub/ilu/ilu.html.

[8] Java Grande Forum. See http : //www . javagrande . org.
[9] JAVASOFT, Java Native Interface Specification, May 1997.

[lo] MESSAGE PASSING INTERFACE FORUM, MPI: A Message-Passing Interface Standard (vl.l),
June 1995.

[ll] J. G. Mitchell, J. J. Gibbons, G. Hamilton, P. B. Kessler, Y. A. Khalidi, P. Kougiouris, P. W.
Madany, M. N. Nelson, M. L. Powell, and S. R. Radia, An overview of the Spring system, in
Proceedings of Compcon Spring 1994, February 1994.

[12] OBJECT MANAGEMENT GROUP, The Common Object Request Broker: Architecture and
Specification, February 1998. Available at http : //www . omg . org/corba.

LANGUAGE INTEROPERABILITY MECHANISMS 11

[ES] Paul Dubois, personal communication. See http : //xf iles . llnl . gov/CXXDbjects/cxx . htm.
[14] J. Shirley, W. Hu, and D. Nagid, Guide to Writing DCE Applications, O’Reilly & Associates,

Inc., Sebastopol, C-i\: 1994.

